Lecture - 2

We already saw some examples of groups. So it's time to see the formal definition. Recall that a binary operation on a set takes two elements from the set and gives another element in the set.

Definition A set G with a binary operation ' $口$ 'is called a group i
(1) For any $a, b, c \in G, \quad(a \cdot b) \cdot c=a \cdot(b \cdot c)$
[i.e, ... is associative]
(2) There exists an element $e \in G$ called the identity, such that $a \cdot e=e \cdot a=a$, for all $a \in G$.
(3) For all $a \in G$ there exists an element $a^{-1} \in G$ such that $a^{-1} \cdot a=a \cdot a^{-1}=e, a^{-1}$ is called the inverse of a.

Remark :-1) We are not writing the closure property in the definition because 1.1 is a bincouy operation so closure is automatically satiofield. However, when asked whether a set is a group or not, be sure to check closure too.
2) We might use the symbol ' \forall ' for 'forall' and ' \exists ' for there existo.

Definition If $a, b \in G$ are two elements ire a group G they are said to commute if $a \cdot b=b \cdot a$.

If a and b commute $\forall a, b \in G$, we say G is abelian. Otherwise, G is called non-abelian.

Ques:- When can you say that a group is mon-abelian? Have we seen an example of a non-abelian group?

Before looking at more examples, let's see some basic properties of a group.
$\frac{\text { Proposition } 1}{1}$ (Uniqueness of identity elements) In a group G, \exists only ane identity element.

Proof. Suppose e and f both are identity elements. Since e and f are arbitrary, in order to prove that the identity is unique, we must show that $e=f$.

Now $\quad e_{f}=f$
(as e is identity)
and $\quad e f=e \quad$ (as f is identity)

$$
\Rightarrow \quad e=f
$$

Proposition 2 [Inverse of an element is unique] Every element $a \in G$ has an unique inverse in G.

Proof:- Left as an exercise.
Proposition 3 [Cancellation holds in a group]
In a group G, the right and left cancellation law hold, i.e, $b a=c a \Rightarrow b=c$ and $a b=a c \Rightarrow b=c$.
Proof :- Let's prove the left cancellation, leaving the right cancellation a_{0} an exercise. Suppose $a b=a c$. Since a has an inverse in G, let's multiply by a^{-1} on both sides to get

$$
\begin{array}{rlrl}
& a^{-1}(a b)=a^{-1}(a c) & \\
\Rightarrow & \left(a^{-1} a\right) b=\left(a^{-1} a\right) c & & \text { [associative] } \\
\Rightarrow & e b=e c \\
\Rightarrow & b=c & & \text { [by the definition of e]. }
\end{array}
$$

More examples of Groups
Ex. Integers modulo n, \mathbb{Z}_{n}.
Recall from MATH 135 that $\mathbb{Z}_{n}=\{[0],[1], \ldots,[n-1]\}$ where $[a]$ io an equivalence class (weill learn about them in more cletail) defined bu

$$
[a]=\left\{b \in \mathbb{Z}^{\prime} \mid a-b \text { is divisible by } n\right\}
$$

\mathbb{Z}_{n} is a group under addition in \mathbb{Z}_{n} (which is not the same as addition in \mathbb{Z}).
Recall that in $\mathbb{Z}_{n},[a]+[b]=[a+b]$. The identity element is $[0]$ and the inverse of any $[a]$ is $[n-a]$. e.g. Consider $\mathbb{Z}_{4}=\{[0],[1],[2],[3]\}$. Jo see how the operation in group look like, weill draw a table called the Cayley table (in honour of the mathematician Arthur Cayloy).

+	$[0]$	$[1]$	$[2]$	$[3]$
$[0]$	$[0]$	$[1]$	$[2]$	$[3]$
$[1]$	$[1]$	$[2]$	$[3]$	$[0]$
$[2]$	$[2]$	$[3]$	$[0]$	$[1]$
$[3]$	$[3]$	$[0]$	$[1]$	$[2]$

Ex The group of units modulo $n, U(n)$
For any $n \in \mathbb{Z}$, the set $U(n)$ is the set of all the elements in \mathbb{Z}_{n} which have inverses. Again, vecall from MATH 135 that $a \in \mathbb{Z}_{n}$ has an inverse if and only if $\operatorname{gcd}(a, n)=1$.

Since we are collecting only those, elements in \mathbb{Z}_{n}, which have inverses, so we have that $U(n)$ is a group
under multiplication in \mathbb{Z}_{n}. The identity is [1].
e.g. Consider $U(12)$. The integers a between 0 and 12 which are coprime to 12 are $1,5,7,11$, so $U(12)=\{1,5,7,11\}$. The cayley table for $U(12)$ - as follows :-

\cdot	1	5	7	11
1	1	5	7	11
5	5	1	11	7
7	7	11	1	5
11	11	7	5	1

Ques:-1) What is the inverse of 5 in $U(12)$?

1) What is the set $U(5)$? Can you generalize it?

Ex Dihedral Groups
Let's introduce a very important set of examples called the dihedral group $D_{n}, \forall n \geq 3$. D_{n}, by definition is the group of symmetries of a regular n-gon, where symmetry means an operation which might change the individual places in on n-goo but docon't change the overall shape.

For simplicity, let's under the group D_{4}, which is the group of the symmetries of a square.

$$
\begin{aligned}
& R_{0}=\text { Rotation of } 0^{\circ} \text { (no change in position) } \\
& R_{90}=\text { Rotation of } 90^{\circ} \text { (counterclockwise) } \\
& R_{180}=\text { Rotation of } 180^{\circ} \\
& R_{270}=\text { Rotation of } 270^{\circ} \\
& H \text { = Flip about a horizontal axis } \\
& V=\text { Flip about a vertical axis } \\
& D=\text { Flip about the main diagonal } \\
& D^{\prime}=\text { Flip about the other diagonal }
\end{aligned}
$$

Symmetries of a square
Credit : Contemporary Abstract Algebra, Joe Gallian

As you com see in the figure, 4 of the symmetries are anti-clockwise rotation by $0^{\circ}, 90^{\circ}, 180^{\circ}$ and 270° which are denoted by $R_{0}, R_{90}, R_{180}, R_{270}$ respectively. If you rotate the square by say 360° they yoill get back R_{0} and rotation by 540° will give bock R_{180}.

The letters on the vertices of the square are only there for visual aid to see which operation is taking place.
The other symmetries core reflections:- along a vertical axis, horizontal axis, and both the diagonals.

So, we have the set $D_{4}=\left\{R_{0}, R_{90}, R_{180}, R_{270}, H, V, D\right.$,

$$
\left.D^{\prime}\right\}
$$

But if D_{4} is a group there must be some operationto. This is pretty simple: the operation : composition of Symmetries, i.e., if suppose S_{1} and S_{2} are symmetries then $S_{1} S_{2}$ will be performing S_{2} and then performing S_{1}, ie, from right to left. e.g. What is $R_{90} \cdot R_{180}$? We first perform R_{180} amd then R_{90}

What is $R_{270} \cdot H$?
We first do H and then do R_{270} to it.

So attest in there cases it seems that the operation is a binary operation, i.e., it is taking two symmetries and producing another symmetry.

But is that always the case? For that we just make the Cayley table for D_{4}.

	R_{0}	R_{90}	R_{180}	R_{270}	H	V	D	D^{\prime}
R_{0}	R_{0}	R_{90}	R_{180}	R_{270}	H	V	D	D^{\prime}
R_{90}	R_{90}	R_{180}	R_{270}	R_{0}	D^{\prime}	D	H	V
R_{180}	R_{180}	R_{270}	R_{0}	R_{90}	V	H	D^{\prime}	D
R_{270}	R_{270}	R_{0}	R_{90}	R_{180}	D	D^{\prime}	V	H
H	H	D	V	D^{\prime}	R_{0}	R_{180}	R_{90}	R_{270}
V	V	D^{\prime}	H	D	R_{180}	R_{0}	R_{270}	R_{90}
D	D	V	D^{\prime}	H	R_{270}	R_{90}	R_{0}	R_{180}
D^{\prime}	D^{\prime}	H	D	V	R_{90}	R_{270}	R_{180}	R_{0}

Exercise:- Understand this Cayley table by doing the operations from figure 1 .

Note from the Cayley table that R_{0} serves as the identity (the horizontal and vertical rows below R_{0} remains unchanged).

For inverses, e.g. inverse of H is H itself (which makes sense geometrically too as two horizontal flips in a row should cancel the effect) and the inverse of R_{90} is R_{270} (again makes sense geometrically).

Also notice that $R_{270} \cdot H=D$ and $H \cdot R_{270}=D^{\prime}$ so $\quad R_{270} \cdot H \neq H \cdot R_{270}$ and hence D4 is non-abelian.

There is nothing special about the square. We can talk about the dihedral group of any regular polygon. The group of symmetries of a regular n-gon is the group D_{n} amd the operation is again the composition of symmetries.

Exercise Find the Cayley table of D_{3}. In fact, draw the symmetries of the triangle.

